首页> 外文OA文献 >Wavelet and curvelet moments for image classification: application to aggregate mixture grading
【2h】

Wavelet and curvelet moments for image classification: application to aggregate mixture grading

机译:小波和曲线小波矩用于图像分类:在混合料分级中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We show the potential for classifying images of mixtures of aggregate, based themselves on varying, albeit well-defined, sizes and shapes, in order to provide a far more effective approach compared to the classification ofindividual sizes and shapes. While a dominant (additive, stationary) Gaussian noise component in image data will ensure that wavelet coefficients are of Gaussian distribution, long tailed distributions (symptomatic, for example, of extreme values) may well hold in practice for wavelet coefficients. Energy (2nd order moment) has often been used for image characterization for image content-based retrieval, and higher order moments may be important also, not least for capturing long tailed distributional behavior. In this work, we assess 2nd, 3rd and 4th order moments of multiresolution transform -- wavelet and curvelet transform -- coefficients as features.As analysis methodology, taking account of image types, multiresolution transforms, and moments of coefficients in the scales or bands, we use correspondence analysis as well as k-nearest neighbors supervised classification.
机译:我们展示了基于变化的,尽管定义明确的尺寸和形状对集料混合物图像进行分类的潜力,以提供比单个尺寸和形状分类更为有效的方法。虽然图像数据中的主要(加性,平稳)高斯噪声分量将确保小波系数具有高斯分布,但实际上对于小波系数而言,长尾分布(例如,有症状的极值)很可能成立。能量(二阶矩)经常用于基于图像内容的检索的图像表征,并且高阶矩也可能很重要,尤其是对于捕获长尾分布行为。在这项工作中,我们评估多分辨率变换的二阶,三阶和四阶矩-小波和Curvelet变换-系数作为特征。作为分析方法,考虑图像类型,多分辨率变换以及尺度或频带中的系数矩,我们使用对应分析以及k近邻监督分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号